Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 848
1.
BMC Biol ; 22(1): 65, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38486242

BACKGROUND: DNA methylation has been documented to play vital roles in diseases and biological processes. In bovine, little is known about the regulatory roles of DNA methylation alterations on production and health traits, including mastitis. RESULTS: Here, we employed whole-genome DNA methylation sequencing to profile the DNA methylation patterns of milk somatic cells from sixteen cows with naturally occurring Staphylococcus aureus (S. aureus) subclinical mastitis and ten healthy control cows. We observed abundant DNA methylation alterations, including 3,356,456 differentially methylated cytosines and 153,783 differential methylation haplotype blocks (dMHBs). The DNA methylation in regulatory regions, including promoters, first exons and first introns, showed global significant negative correlations with gene expression status. We identified 6435 dMHBs located in the regulatory regions of differentially expressed genes and significantly correlated with their corresponding genes, revealing their potential effects on transcriptional activities. Genes harboring DNA methylation alterations were significantly enriched in multiple immune- and disease-related pathways, suggesting the involvement of DNA methylation in regulating host responses to S. aureus subclinical mastitis. In addition, we found nine discriminant signatures (differentiates cows with S. aureus subclinical mastitis from healthy cows) representing the majority of the DNA methylation variations related to S. aureus subclinical mastitis. Validation of seven dMHBs in 200 cows indicated significant associations with mammary gland health (SCC and SCS) and milk production performance (milk yield). CONCLUSIONS: In conclusion, our findings revealed abundant DNA methylation alterations in milk somatic cells that may be involved in regulating mammary gland defense against S. aureus infection. Particularly noteworthy is the identification of seven dMHBs showing significant associations with mammary gland health, underscoring their potential as promising epigenetic biomarkers. Overall, our findings on DNA methylation alterations offer novel insights into the regulatory mechanisms of bovine subclinical mastitis, providing further avenues for the development of effective control measures.


Mastitis, Bovine , Staphylococcal Infections , Cattle , Animals , Female , Humans , Staphylococcus aureus , DNA Methylation , Mastitis, Bovine/genetics , Mastitis, Bovine/metabolism , Haplotypes , Staphylococcal Infections/genetics , Staphylococcal Infections/veterinary
2.
Vet Res ; 55(1): 21, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38365748

The emergence of transferable linezolid resistance genes poses significant challenges to public health, as it does not only confer linezolid resistance but also reduces susceptibility to florfenicol, which is widely used in the veterinary field. This study evaluated the genetic characteristics of linezolid-resistant Staphylococcus aureus strains isolated from pig carcasses and further clarified potential resistance and virulence mechanisms in a newly identified sequence type. Of more than 2500 strains isolated in a prior study, 15 isolated from pig carcasses exhibited linezolid resistance (minimum inhibitory concentration ≥ 8 mg/L). The strains were characterized in detail by genomic analysis. Linezolid-resistant S. aureus strains exhibited a high degree of genetic lineage diversity, with one strain (LNZ_R_SAU_64) belonging to ST8004, which has not been reported previously. The 15 strains carried a total of 21 antibiotic resistance genes, and five carried mecA associated with methicillin resistance. All strains harbored cfr and fexA, which mediate resistance to linezolid, phenicol, and other antibiotics. Moreover, the strains carried enterotoxin gene clusters, including the hemolysin, leukotoxin, and protease genes, which are associated with humans or livestock. Some genes were predicted to be carried in plasmids or flanked by ISSau9 and the transposon Tn554, thus being transmittable between staphylococci. Strains carrying the plasmid replicon repUS5 displayed high sequence similarity (99%) to the previously reported strain pSA737 in human clinical samples in the United States. The results illustrate the need for continuous monitoring of the prevalence and transmission of linezolid-resistant S. aureus isolated from animals and their products.


Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Swine Diseases , Humans , Animals , Swine , Linezolid/pharmacology , Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/veterinary , Staphylococcal Infections/genetics , Genomics , Republic of Korea , Microbial Sensitivity Tests/veterinary , Drug Resistance, Bacterial/genetics , Swine Diseases/epidemiology
3.
Microb Drug Resist ; 30(2): 82-90, 2024 Feb.
Article En | MEDLINE | ID: mdl-38252794

Staphylococcus aureus is a major, widespread pathogen, and its biofilm-forming characteristics make it even more difficult to eliminate by biocides. Tetracycline (TCY) is a major broad-spectrum antibiotic, the residues of which can cause deleterious health impacts, and subinhibitory concentrations of TCY have the potential to increase biofilm formation in S. aureus. In this study, we showed how the biofilm formation of S. aureus 123786 is enhanced in the presence of TCY at specific subinhibitory concentrations. S. aureus 123786 used in this study was identified as Staphylococcal Cassette Chromosome mec III, sequence type239 and naturally lacking ica operon and atl gene. Two assays were performed to quantify the formation of S. aureus biofilm. In the crystal violet (CV) assay, the absorbance values of biofilm stained with CV at optical density (OD)540 nm increased after 8 and 16 hr of incubation when the concentration of TCY was 1/2 minimum inhibitory concentration (MIC), whereas at the concentration of 1/16 MIC, the absorbance values increased after 16 and 24 hr of incubation. In tetrazolium salt reduction assay, the absorbance value at OD490 nm of S. aureus 123786 biofilms mixed with 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium solution increased after 8 hr when the concentration of TCY was 1/4 MIC, which may be correlated with the higher proliferation and maturation of biofilm. In conclusion, the biofilm formation of S. aureus 123786 could be enhanced in the presence of TCY at specific subinhibitory concentrations.


Anti-Bacterial Agents , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Staphylococcal Infections/genetics , Tetracycline/pharmacology , Biofilms , Operon/genetics
4.
PLoS Biol ; 22(1): e3002457, 2024 Jan.
Article En | MEDLINE | ID: mdl-38175839

Heteroresistance (HR) is an enigmatic phenotype where, in a main population of susceptible cells, small subpopulations of resistant cells exist. This is a cause for concern, as this small subpopulation is difficult to detect by standard antibiotic susceptibility tests, and upon antibiotic exposure the resistant subpopulation may increase in frequency and potentially lead to treatment complications or failure. Here, we determined the prevalence and mechanisms of HR for 40 clinical Staphylococcus aureus isolates, against 6 clinically important antibiotics: daptomycin, gentamicin, linezolid, oxacillin, teicoplanin, and vancomycin. High frequencies of HR were observed for gentamicin (69.2%), oxacillin (27%), daptomycin (25.6%), and teicoplanin (15.4%) while none of the isolates showed HR toward linezolid or vancomycin. Point mutations in various chromosomal core genes, including those involved in membrane and peptidoglycan/teichoic acid biosynthesis and transport, tRNA charging, menaquinone and chorismite biosynthesis and cyclic-di-AMP biosynthesis, were the mechanisms responsible for generating the resistant subpopulations. This finding is in contrast to gram-negative bacteria, where increased copy number of bona fide resistance genes via tandem gene amplification is the most prevalent mechanism. This difference can be explained by the observation that S. aureus has a low content of resistance genes and absence of the repeat sequences that allow tandem gene amplification of these genes as compared to gram-negative species.


Daptomycin , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Vancomycin , Linezolid/therapeutic use , Teicoplanin/therapeutic use , Prevalence , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/genetics , Staphylococcal Infections/drug therapy , Oxacillin/therapeutic use , Mutation , Gentamicins
5.
Mol Biol Rep ; 51(1): 237, 2024 Jan 29.
Article En | MEDLINE | ID: mdl-38285273

BACKGROUND: The purpose of this study was to investigate the relationship between biofilm-forming microorganisms (BFM) and DEFB1 gene variants on ß-defensin levels in patients with periprosthetic joint infection (PJI) of Mexican origin. METHODS AND RESULTS: One hundred and five clinical aspirates were obtained from patients with suspected PJI. After microbiologic culture, samples were classified as non-septic and septic; of the latter, only those positive for Staphylococcus aureus and Pseudomonas aeruginosa were selected. ß-Defensin levels were quantified by ELISA, DNA was extracted from total leukocytes of the samples, and - 20G > A (rs11362) and - 44 C > G (rs1800972) variants were genotyped using TaqMan probes. Forty-one clinical aspirates were non-septic, 18 were positive for S. aureus and 18 were positive for P. aeruginosa. It was observed that ß-defensin levels were higher in the P. aeruginosa group compared to S. aureus group (2339.0 pg/mL IQR = 1809.2 vs. 1821.3 pg/mL IQR = 1536.4) and non-septic group (2339.0 pg/mL IQR = 1809.2 vs. 1099.7 pg/mL IQR = 1744.5, P < 0.001). The CG genotype of the rs1800972 variant was associated with higher ß-defensin levels compared to the CC genotype for both P. aeruginosa and S. aureus (1905.8 vs. 421.7 pg/mL, P = 0.004; and 1878.2 vs. 256.4 pg/mL, P = 0.006, respectively). CONCLUSIONS: Our results show that ß-defensin levels are significantly elevated in patients with BFM-associated PJI compared to those without infection. Furthermore, carriers of the CG genotype of the rs1800972 variant have an increased risk of PJI. Further research is needed to replicate these findings in a larger population.


Prosthesis-Related Infections , Pseudomonas Infections , Staphylococcal Infections , beta-Defensins , Humans , beta-Defensins/genetics , Biofilms , Prosthesis-Related Infections/genetics , Pseudomonas aeruginosa , Pseudomonas Infections/genetics , Staphylococcal Infections/genetics , Staphylococcus aureus
6.
PLoS Pathog ; 20(1): e1011927, 2024 Jan.
Article En | MEDLINE | ID: mdl-38227607

Staphylococcus aureus is an opportunistic pathogen capable of causing many different human diseases. During colonization and infection, S. aureus will encounter a range of hostile environments, including acidic conditions such as those found on the skin and within macrophages. However, little is known about the mechanisms that S. aureus uses to detect and respond to low pH. Here, we employed a transposon sequencing approach to determine on a genome-wide level the genes required or detrimental for growth at low pH. We identified 31 genes that were essential for the growth of S. aureus at pH 4.5 and confirmed the importance of many of them through follow up experiments using mutant strains inactivated for individual genes. Most of the genes identified code for proteins with functions in cell wall assembly and maintenance. These data suggest that the cell wall has a more important role than previously appreciated in promoting bacterial survival when under acid stress. We also identified several novel processes previously not linked to the acid stress response in S. aureus. These include aerobic respiration and histidine transport, the latter by showing that one of the most important genes, SAUSA300_0846, codes for a previously uncharacterized histidine transporter. We further show that under acid stress, the expression of the histidine transporter gene is increased in WT S. aureus. In a S. aureus SAUSA300_0846 mutant strain expression of the histidine biosynthesis genes is induced under acid stress conditions allowing the bacteria to maintain cytosolic histidine levels. This strain is, however, unable to maintain its cytosolic pH to the same extent as a WT strain, revealing an important function specifically for histidine transport in the acid stress response of S. aureus.


Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Histidine/genetics , Histidine/metabolism , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Hydrogen-Ion Concentration , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
7.
Int J Mol Sci ; 24(21)2023 Oct 29.
Article En | MEDLINE | ID: mdl-37958706

Staphylococcus lugdunensis is an emerging high-virulent pathogen. Here, the presence and expression of virulence genes (icaA, fbl, vwbl, fbpA, slush A, B and C, and genes of the putative ß-hemolysin and hemolysin III) and the ability to induce synergistic hemolytic activity and hemolysis after 24, 48 and 72 h were investigated in a collection of twenty-two S. lugdunensis clinical isolates. The collection of isolates, mainly from implant orthopedic infections, had previously been grouped by ribotyping/dendrogram analysis and studied for biofilm matrices, biomasses and antibiotic resistances. Two isolates, constituting a unique small ribogroup sharing the same cluster, exhibited an amplicon size of the slush operon (S. lugdunensis synergistic hemolysin) which was shorter than the expected 977 bp. This outcome can predict the genetic lineage of the S. lugdunensis strains. One isolate (cra1342) presented two deletions: one of 90 bp in slush A and the other of 91 bp in slush B. Another isolate (N860314) showed a single 193 bp deletion, which encompassed part of the slush B terminal sequence and most of slush C. The isolate N860314 was devoid of hemolytic activity after 24 h, and the first consideration was that the deleted region deals with the coding of the active enzymatic site of the slush hemolysin. On the other hand, cra1342 and N860314 isolates with different slush deletions and with hemolytic activity after 24 and 48 h, respectively, could have replaced the hemolytic phenotype through other processes.


Staphylococcal Infections , Staphylococcus lugdunensis , Humans , Staphylococcus lugdunensis/genetics , Virulence Factors/genetics , Hemolysin Proteins/genetics , Hemolysis/genetics , Operon , Staphylococcal Infections/genetics
8.
BMC Microbiol ; 23(1): 315, 2023 10 28.
Article En | MEDLINE | ID: mdl-37891473

BACKGROUND: Methicillin-resistant Staphylococcus aureus is linked to both nosocomial and community infections. One of the key virulence factors of S. aureus is Panton-Valentine leukocidin (PVL). The PVL genes are mostly associated with community-acquired MRSA (CA-MRSA). This study evaluates the prevalence of PVL genes as a marker for CA-MRSA at tertiary hospitals in Mansoura, Dakahlia, Egypt. S. aureus was isolated from clinical specimens obtained from different departments of tertiary hospitals, outpatient clinics, and hospital healthcare workers (HCWs). PCR was used to detect the mecA, PVL, and SCCmec genes among the recovered isolates. Standard broth microdilution method was used to determine the minimum inhibitory concentrations (MIC) of nine antibiotics against S. aureus. RESULTS: Two hundred S. aureus isolates were recovered and identified out of the total isolates (n = 320). The mecA gene was detected in 103 S. aureus isolates (51.5%). Among the MRSA isolates, 46.60% were PVL-positive. The incidence of the PVL genes of MRSA in nosocomial (HA), outpatient clinics (CA), and HCWs was 46.66%, 56.52%, and 42%, respectively. All MRSA isolates showed resistance to cefoxitin. The percentage of resistance to most tested antibiotics was high, except for ciprofloxacin (6.85%). Both antibiotic resistance and multidrug resistance among MRSA isolates were generally higher in PVL-positive isolates than in PVL-negative isolates in HA- and CA-MRSA isolates. While SCCmec type V was the most prevalent in PVL-positive MRSA stains, type I was the most prevalent in PVL-negative isolates. CONCLUSION: This study revealed that PVL genes are generally highly prevalent among mecA-positive MRSA isolates, whether they are CA-MRSA, HA-MRSA, or HCW isolates. Therefore, PVL is not a valid marker for CA-MRSA in Mansoura, Dakahlia Governorate, Egypt, as has been reported in other countries. Further epidemiologic studies are required to track the incidence of PVL in HA-MRSA, CA-MRSA, and HCW isolates in other Egyptian governorates.


Community-Acquired Infections , Cross Infection , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Egypt/epidemiology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/genetics , Community-Acquired Infections/epidemiology , Exotoxins/genetics , Leukocidins/genetics , Anti-Bacterial Agents/pharmacology , Tertiary Care Centers , Cross Infection/epidemiology
9.
Front Immunol ; 14: 1229562, 2023.
Article En | MEDLINE | ID: mdl-37731490

Life-threatening toxic shock syndrome is often caused by the superantigen toxic shock syndrome toxin-1 (TSST-1) produced by Staphylococcus aureus. A well-known risk factor is the lack of neutralizing antibodies. To identify determinants of the anti-TSST-1 antibody response, we examined 976 participants of the German population-based epidemiological Study of Health in Pomerania (SHIP-TREND-0). We measured anti-TSST-1 antibody levels, analyzed the colonization with TSST-1-encoding S. aureus strains, and performed a genome-wide association analysis of genetic risk factors. TSST-1-specific serum IgG levels varied over a range of 4.2 logs and were elevated by a factor of 12.3 upon nasal colonization with TSST-1-encoding S. aureus. Moreover, the anti-TSST-1 antibody levels were strongly associated with HLA class II gene loci. HLA-DRB1*03:01 and HLA-DQB1*02:01 were positively, and HLA-DRB1*01:01 as well as HLA-DQB1*05:01 negatively associated with the anti-TSST-1 antibody levels. Thus, both toxin exposure and HLA alleles affect the human antibody response to TSST-1.


Shock, Septic , Staphylococcal Infections , Humans , Staphylococcus aureus , Alleles , Genome-Wide Association Study , Shock, Septic/genetics , Superantigens/genetics , Staphylococcal Infections/genetics
10.
Infect Immun ; 91(10): e0026023, 2023 10 17.
Article En | MEDLINE | ID: mdl-37725063

Staphylococcus aureus is a highly infective Gram-positive bacterial pathogen that causes a wide range of diseases in both healthy and immunocompromised individuals. It can evade host immune defenses by expressing numerous virulence factors and toxins. Coupled with the inability of the human host to develop protective immunity against S. aureus, the emergence of antibiotic-resistant strains complicates treatment options. The non-canonical Sts phosphatases negatively regulate signaling pathways in varied immune cell types. To determine the role of the Sts proteins in regulating host responses to a Gram-positive microorganism, we investigated the response of mice lacking Sts expression to S. aureus infection. Herein, we demonstrate that Sts -/- animals are significantly resistant to lethal intravenous doses of S. aureus strain USA300. Resistance is characterized by significantly enhanced survival and accelerated bacterial clearance in multiple peripheral organs. Infected Sts -/- animals do not display increased levels of cytokines TNFα, IFNγ, and IL-6 in the spleen, liver, and kidney during the early stages of the infection, suggesting that a heightened pro-inflammatory response does not underlie the resistance phenotype. In vivo ablation of mononuclear phagocytes compromises the Sts -/- enhanced CFU clearance phenotype. Additionally, Sts -/- bone marrow-derived macrophages demonstrate significantly enhanced restriction of intracellular S. aureus following ex vivo infection. These results reveal the Sts enzymes to be critical regulators of host immunity to a virulent Gram-positive pathogen and identify them as therapeutic targets for optimizing host anti-microbial responses.


Phosphoric Monoester Hydrolases , Staphylococcal Infections , Staphylococcus aureus , Animals , Humans , Mice , Macrophages/metabolism , Phosphoric Monoester Hydrolases/genetics , Signal Transduction , Staphylococcal Infections/genetics
11.
Cell Rep ; 42(9): 113069, 2023 09 26.
Article En | MEDLINE | ID: mdl-37703880

Outcomes of severe bacterial infections are determined by the interplay between host, pathogen, and treatments. While human genomics has provided insights into host factors impacting Staphylococcus aureus infections, comparatively little is known about S. aureus genotypes and disease severity. Building on the hypothesis that bacterial pathoadaptation is a key outcome driver, we developed a genome-wide association study (GWAS) framework to identify adaptive mutations associated with treatment failure and mortality in S. aureus bacteremia (1,358 episodes). Our research highlights the potential of vancomycin-selected mutations and vancomycin minimum inhibitory concentration (MIC) as key explanatory variables to predict infection severity. The contribution of bacterial variation was much lower for clinical outcomes (heritability <5%); however, GWASs allowed us to identify additional, MIC-independent candidate pathogenesis loci. Using supervised machine learning, we were able to quantify the predictive potential of these adaptive signatures. Our statistical genomics framework provides a powerful means to capture adaptive mutations impacting severe bacterial infections.


Bacteremia , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Vancomycin/pharmacology , Vancomycin/therapeutic use , Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Genome-Wide Association Study , Staphylococcal Infections/drug therapy , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Bacteremia/drug therapy , Bacteremia/genetics , Bacteremia/microbiology , Microbial Sensitivity Tests , Treatment Outcome
12.
PLoS One ; 18(7): e0283914, 2023.
Article En | MEDLINE | ID: mdl-37406030

Staphylococcus agnetis is an emerging pathogen in chickens but has been most commonly isolated from sub-clinical mastitis in bovines. Previous whole-genome analyses for known virulence genes failed to identify determinants for the switch from mild ductal infections in cattle to severe infections in poultry. We now report identification of a family of 15 kbp, 17-19 gene mobile genetic elements (MGEs) specific to chicken osteomyelitis and dermatitis isolates of S. agnetis. These MGEs can be present in multiple copies per genome. The MGE has been vectored on a Staphylococcus phage that separately lysogenized two S. agnetis osteomyelitis strains. The S. agnetis genome from a broiler breeder case of ulcerative dermatitis contains 2 orthologs of this MGE, not associated with a prophage. BLASTn and phylogenetic analyses show that there are closely related intact MGEs found in genomes of S. aureus. The genome from a 1980s isolate from chickens in Ireland contains 3 copies of this MGE. More recent chicken isolates descended from that genome (Poland 2009, Oklahoma 2010, and Arkansas 2018) contain 2 to 4 related copies. Many of the genes of this MGE can be identified in disparate regions of the genomes of other chicken isolates of S. aureus. BLAST searches of the NCBI databases detect no similar MGEs outside of S. aureus and S. agnetis. These MGEs encode no proteins related to those produced by Staphylococcus aureus Pathogenicity Islands, which have been associated with the transition of S. aureus from human to chicken hosts. Other than mobilization functions, most of the genes in these new MGEs annotate as hypothetical proteins. The MGEs we describe appear to represent a new family of Chromosomal Islands (CIs) shared amongst S. agnetis and S. aureus. Further work is needed to understand the role of these CIs/MGEs in pathogenesis. Analysis of horizontal transfer of genetic elements between isolates and species of Staphylococci provides clues to evolution of host-pathogen interactions as well as revealing critical determinants for animal welfare and human diseases.


Staphylococcal Infections , Staphylococcus aureus , Female , Animals , Cattle , Humans , Staphylococcus aureus/genetics , Chickens/genetics , Virulence/genetics , Genomic Islands/genetics , Phylogeny , Staphylococcal Infections/veterinary , Staphylococcal Infections/genetics , Gene Transfer, Horizontal
13.
Fish Shellfish Immunol ; 139: 108927, 2023 Aug.
Article En | MEDLINE | ID: mdl-37406892

The aquaculture industry has suffered significant financial losses as a result of disease outbreaks. In particular, disease outbreaks have become a major problem that can seriously affect the sustainable development of the Macrobrachium rosenbergii aquaculture industry. It is crucial to determine the defense mechanism of the host after pathogenic invasion in order to provide effective defense measures after disease outbreaks. Shrimp, like other invertebrates, primarily depend on their innate immune systems to defend against pathogens, and recognize and resist pathogens through humoral and cellular immune responses. In this investigation, we used RNA-seq technology to investigate the transcriptome of hemocytes from M. rosenbergii induced by Staphylococcus aureus. Our main targets were immune pathways and genes related to innate immunity. RNA-seq identified 209,069 and 204,775 unigenes in the control and experimental groups, respectively. In addition, we identified 547 and 1734 differentially expressed genes (DEGs) following S. aureus challenge after 6 and 12 h (h), respectively. GO and KEGG enrichment analysis revealed that the DEGs were significantly enriched in several biological signalling pathways, including NOD-like receptor, PI3K-Akt, Toll and Imd, IL-17, TGF-beta, RIG-I-like receptor, cAMP, apoptosis, and C-type lectin receptor. Sixteen DEGs were chosen at random for qPCR verification; these results concurred with those from sequencing. Our findings revealed that immune-related genes play an important role in antibacterial activities and have specific functions for gram-positive bacteria. These results provide more data for the prevention of M. rosenbergii diseases and offer a basis for the better prevention of diseases.


Palaemonidae , Staphylococcal Infections , Animals , Staphylococcus aureus , Hemocytes , Phosphatidylinositol 3-Kinases/genetics , Gene Expression Profiling , Transcriptome , Immunity, Innate/genetics , Staphylococcal Infections/genetics , Staphylococcal Infections/veterinary
14.
J Hosp Infect ; 139: 141-149, 2023 Sep.
Article En | MEDLINE | ID: mdl-37301229

BACKGROUND: The emergence of novel genomic-type clones, such as community-associated meticillin-resistant Staphylococcus aureus (MRSA) and livestock-associated MRSA, and their invasion into hospitals have become major concerns worldwide; however, little information is available regarding the prevalence of MRSA in Japan. Whole-genome sequencing (WGS) has been conducted to analyse various pathogens worldwide. Therefore, it is important to establish a genome database of clinical MRSA isolates available in Japan. AIM: A molecular epidemiological analysis of MRSA strains isolated from bloodstream-infected patients in a Japanese university hospital was conducted using WGS and single-nucleotide polymorphism (SNP) analysis. Additionally, through a review of patients' clinical characteristics, the effectiveness of SNP analysis as a tool for detecting silent nosocomial transmission that may be missed by other methods was evaluated in diverse settings and various time points of detection. METHODS: Polymerase-chain-reaction-based staphylococcal cassette chromosome mec (SCCmec) typing was performed using 135 isolates obtained between 2014 and 2018, and WGS was performed using 88 isolates obtained between 2015 and 2017. FINDINGS: SCCmec type II strains, prevalent in 2014, became rare in 2018, whereas the prevalence of SCCmec type IV strains increased from 18.75% to 83.87% of the population, and became the dominant clones. Clonal complex (CC) 5 CC8 and CC1 were detected between 2015 and 2017, with CC1 being dominant. In 88 cases, SNP analyses revealed nosocomial transmissions among 20 patients which involved highly homologous strains. CONCLUSIONS: Routine monitoring of MRSA by whole-genome analysis is effective not only for gaining knowledge regarding molecular epidemiology, but also for detecting silent nosocomial transmission.


Cross Infection , Methicillin-Resistant Staphylococcus aureus , Sepsis , Staphylococcal Infections , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin , Molecular Epidemiology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/genetics , Hospitals, University , Cross Infection/epidemiology
15.
J Dairy Sci ; 106(8): 5517-5536, 2023 Aug.
Article En | MEDLINE | ID: mdl-37291036

Staphylococcus aureus is one of the most prevalent contagious bacterial pathogen of bovine mastitis. The subclinical mastitis it causes has long-term economic implications and it is difficult to control. To further understanding of the genetic basis of mammary gland defense against S. aureus infection, the transcriptomes of milk somatic cells from 15 cows with persistent natural S. aureus infection (S. aureus-positive, SAP) and 10 healthy control cows (HC) were studied by deep RNA-sequencing technology. Comparing the transcriptomes of SAP to HC group revealed 4,077 differentially expressed genes (DEG; 1,616 up- and 2,461 downregulated). Functional annotation indicated enrichment of DEG in 94 Gene Ontology (GO) and 47 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Terms related to the immune response and disease processes were mostly enriched for by upregulated DEG, whereas biological process terms related to cell adhesion, cell movement and localization, and tissue development were mostly enriched for by downregulated DEG. Weighted gene co-expression network analysis grouped DEG into 7 modules, the most important module (colored turquoise by software and here referred to as Turquoise module) was positively significantly correlated with S. aureus subclinical mastitis. The 1,546 genes in the Turquoise module were significantly enriched in 48 GO terms and 72 KEGG pathways, with 80% of them being disease- and immune-related terms [e.g., immune system process (GO:0002376), cytokine-cytokine receptor interaction (bta04060) and S. aureus infection (bta05150)]. Some DEG such as IFNG, IL18, IL1B, NFKB1, CXCL8, and IL12B were enriched in immune and disease pathways suggesting their possible involvement in the regulation of the host response to S. aureus infection. Four modules (Yellow, Brown, Blue, and Red) were negatively correlated (significantly) with S. aureus subclinical mastitis, and were enriched in functional annotations involved in the regulation of cell migration, cell communication, metabolic process, and blood circulatory system development, respectively. Application of sparse partial least squares discriminant analysis to genes of the Turquoise module identified 5 genes (NR2F6, PDLIM5, RAB11FIP5, ACOT4, and TMEM53) capable of explaining the majority of the differences in the expression patterns between SAP and HC cows. In conclusion, this study has furthered understanding of the genetic changes in the mammary gland and the molecular mechanisms underlying S. aureus mastitis, as well as revealed a list of candidate discriminant genes with potential regulatory roles in response to S. aureus infection.


Cattle Diseases , Mastitis, Bovine , Staphylococcal Infections , Animals , Cattle , Female , Staphylococcus aureus/genetics , Mastitis, Bovine/microbiology , Gene Expression Profiling/veterinary , Staphylococcal Infections/veterinary , Staphylococcal Infections/genetics
16.
BMC Bioinformatics ; 24(1): 243, 2023 Jun 09.
Article En | MEDLINE | ID: mdl-37296404

Bacterial genomes exhibit widespread horizontal gene transfer, resulting in highly variable genome content that complicates the inference of genetic interactions. In this study, we develop a method for detecting coevolving genes from large datasets of bacterial genomes based on pairwise comparisons of closely related individuals, analogous to a pedigree study in eukaryotic populations. We apply our method to pairs of genes from the Staphylococcus aureus accessory genome of over 75,000 annotated gene families using a database of over 40,000 whole genomes. We find many pairs of genes that appear to be gained or lost in a coordinated manner, as well as pairs where the gain of one gene is associated with the loss of the other. These pairs form networks of rapidly coevolving genes, primarily consisting of genes involved in virulence, mechanisms of horizontal gene transfer, and antibiotic resistance, particularly the SCCmec complex. While we focus on gene gain and loss, our method can also detect genes that tend to acquire substitutions in tandem, or genotype-phenotype or phenotype-phenotype coevolution. Finally, we present the R package DeCoTUR that allows for the computation of our method.


Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/genetics , Genome, Bacterial , Virulence/genetics , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Anti-Bacterial Agents
17.
mSystems ; 8(4): e0027923, 2023 08 31.
Article En | MEDLINE | ID: mdl-37310465

CodY is a conserved broad-acting transcription factor that regulates the expression of genes related to amino acid metabolism and virulence in Gram-positive bacteria. Here, we performed the first in vivo determination of CodY target genes using a novel CodY monoclonal antibody in methicillin-resistant Staphylococcus aureus (MRSA) USA300. Our results showed (i) the same 135 CodY promoter binding sites regulating the 165 target genes identified in two closely related virulent S. aureus USA300 TCH1516 and LAC strains; (ii) the differential binding intensity for the same target genes under the same conditions was due to sequence differences in the same CodY-binding site in the two strains; (iii) a CodY regulon comprising 72 target genes that are differentially regulated relative to a CodY deletion strain, representing genes that are mainly involved in amino acid transport and metabolism, inorganic ion transport and metabolism, transcription and translation, and virulence, all based on transcriptomic data; and (iv) CodY systematically regulated central metabolic flux to generate branched-chain amino acids (BCAAs) by mapping the CodY regulon onto a genome-scale metabolic model of S. aureus. Our study performed the first system-level analysis of CodY in two closely related USA300 TCH1516 and LAC strains, revealing new insights into the similarities and differences of CodY regulatory roles between the closely related strains. IMPORTANCE With the increasing availability of whole-genome sequences for many strains within the same pathogenic species, a comparative analysis of key regulators is needed to understand how the different strains uniquely coordinate metabolism and expression of virulence. To successfully infect the human host, Staphylococcus aureus USA300 relies on the transcription factor CodY to reorganize metabolism and express virulence factors. While CodY is a known key transcription factor, its target genes are not characterized on a genome-wide basis. We performed a comparative analysis to describe the transcriptional regulation of CodY between two dominant USA300 strains. This study motivates the characterization of common pathogenic strains and an evaluation of the possibility of developing specialized treatments for major strains circulating in the population.


Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Repressor Proteins/genetics , Regulon/genetics , Transcription Factors/genetics , Staphylococcal Infections/genetics , Amino Acids, Branched-Chain/genetics
18.
Int J Mol Sci ; 24(12)2023 Jun 20.
Article En | MEDLINE | ID: mdl-37373515

Staphylococcus chromogenes (SC) is a common coagulase-negative staphylococcus described as an emerging mastitis pathogen and commonly found in dairy farms. This study investigated the potential involvement of DNA methylation in subclinical mastitis caused by SC. The whole-genome DNA methylation patterns and transcriptome profiles of milk somatic cells from four cows with naturally occurring SC subclinical mastitis (SCM) and four healthy cows were characterized by next-generation sequencing, bioinformatics, and integration analyses. Comparisons revealed abundant DNA methylation changes related to SCM, including differentially methylated cytosine sites (DMCs, n = 2,163,976), regions (DMRs, n = 58,965), and methylation haplotype blocks (dMHBs, n = 53,098). Integration of methylome and transcriptome data indicated a negative global association between DNA methylation at regulatory regions (promoters, first exons, and first introns) and gene expression. A total of 1486 genes with significant changes in the methylation levels of their regulatory regions and corresponding gene expression showed significant enrichment in biological processes and pathways related to immune functions. Sixteen dMHBs were identified as candidate discriminant signatures, and validation of two signatures in more samples further revealed the association of dMHBs with mammary gland health and production. This study demonstrated abundant DNA methylation changes with possible involvement in regulating host responses and potential as biomarkers for SCM.


Mastitis, Bovine , Staphylococcal Infections , Cattle , Animals , Female , Humans , DNA Methylation , Transcriptome , Staphylococcal Infections/genetics , Staphylococcal Infections/veterinary , Mastitis, Bovine/genetics , Staphylococcus/genetics , Milk
19.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article En | MEDLINE | ID: mdl-37175688

Antimicrobial resistance in Staphylococcus spp. colonising the nasopharynx can create risk factors of therapeutic treatment failure or prophylaxis in pregnant women. Resistance is mostly encoded on plasmids (e.g., blaZ gene for penicillinase synthesis) or chromosomes (e.g., mecA and mecC for methicillin resistance). The mecA gene is part of the chromosomal mec gene cassette (SCCmec), which is also located on the plasmid. The disc diffusion method for the selected drugs (beta-lactams, fluoroquinolones, streptogramins, aminoglicosides, macrolides, oxasolidinones, tetracyclines and other groups) was used. PCR for blaZ, mecA and mecC genes and SCCmec cassette detection and typing were performed. S. aureus (54.4%) and S. epidermidis (27.9%) were the most prevalent and showed the highest diversity of resistance profiles. The blaZ, mecA and mecC genes were reported in 95.6%, 20.6% and 1.5% of isolates, respectively. The highest resistance was found to beta-lactams, commonly used during pregnancy. Resistance to a variety of antimicrobials, including benzylpenicillin resistance in blaZ-positive isolates, and the existence of a very high diversity of SCCmec cassette structures in all staphylococci selected from the nasopharyngeal microbiota of pregnant women were observed for the first time. Knowledge of the prevalence of antimicrobial-resistant staphylococci in the nasopharynx of pregnant women may be important for the appropriate treatment or prophylaxis of this group of patients.


Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Pregnancy , Humans , Female , Staphylococcus aureus/genetics , Pregnant Women , Staphylococcus/genetics , Anti-Bacterial Agents/pharmacology , beta-Lactams , Staphylococcus epidermidis , Staphylococcal Infections/drug therapy , Staphylococcal Infections/genetics , Staphylococcal Infections/epidemiology , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Methicillin-Resistant Staphylococcus aureus/genetics
20.
Nat Commun ; 14(1): 1594, 2023 03 22.
Article En | MEDLINE | ID: mdl-36949052

Phenol-soluble modulins (PSMs) and Staphylococcal protein A (SpA) are key virulence determinants for community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA), an important human pathogen that causes a wide range of diseases. Here, using chemical and genetic approaches, we show that inhibition of TarO, the first enzyme in the wall teichoic acid (WTA) biosynthetic pathway, decreases the expression of genes encoding PSMs and SpA in the prototypical CA-MRSA strain USA300 LAC. Mechanistically, these effects are linked to the activation of VraRS two-component system that directly represses the expression of accessory gene regulator (agr) locus and spa. The activation of VraRS was due in part to the loss of the functional integrity of penicillin-binding protein 2 (PBP2) in a PBP2a-dependent manner. TarO inhibition can also activate VraRS in a manner independent of PBP2a. We provide multiple lines of evidence that accumulation of lipid-linked peptidoglycan precursors is a trigger for the activation of VraRS. In sum, our results reveal that WTA biosynthesis plays an important role in the regulation of virulence gene expression in CA-MRSA, underlining TarO as an attractive target for anti-virulence therapy. Our data also suggest that acquisition of PBP2a-encoding mecA gene can impart an additional regulatory layer for the modulation of key signaling pathways in S. aureus.


Colocasia , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Colocasia/genetics , Colocasia/metabolism , Virulence/genetics , Staphylococcal Protein A/genetics , Gene Expression , Staphylococcal Infections/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
...